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A lattice gas automaton (LGA) capable of modeling Maxwell’s equations in three
dimensions is described. The automaton is a three-dimensional interconnection of
two-dimensional LGA cells, with appropriate operations at the junctions between
cells to include the properties of polarization. A homogeneous mathematical de-
scription of the heterogeneous three-dimensional automaton is provided in terms
of the underlying binary variables. The dynamics of the automaton conserve the
scalar components of the electric and magnetic fields. The implementation of the
automaton on the CAM-8 cellular automata machine is described. The LGA has
been validated through calculation of resonant frequencies within various cavities.
The numerical results indicate the success of the automaton in analyzing three-
dimensional EM field problems. We have not proven analytically that this model
reproduces Maxwell’s equations in the macroscopic limit, as this is a topic of future
study. c© 1999 Academic Press
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I. INTRODUCTION

Our goal is not only to solve Maxwell’s equations, but to accomplish this using low
precision integer arithmetic. Our motivation is that this style of algorithm is ideally suited
for implementation on fine-grain parallel computers. Special purpose fine-grain computing
architectures, such as the CAM-8 cellular automata machine, already exist [1]. Operations
within these types of architectures require very few bits of memory, and simple logical
hardware or look-up tables can be used for fast evaluation. This approach is unlike the real
number finite difference time domain (FDTD) [2], finite element (FE) [3], or transmission
line matrix (TLM) [4] methods that have been widely applied to the solution of spatially het-
erogeneous electromagnetic (EM) field problems. These algorithms require floating point
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processors. Lattice gas automata (LGA) have been previously developed for modeling the
behavior of complex fluids [5] and are extremely well suited for execution on machines
such as CAM-8. LGA are represented by an extremely large regular lattice of interconnected
cells. The cells are very simple, usually with only a few bits being used to define all possible
operating states, and are updated in synchronism according to the same deterministic rule
that is local spatially and temporally. In this paper, a LGA for Maxwell’s equations is pre-
sented. The approach is applicable to “resonant” EM field problems where the wavelength
of interest is on the same order as the characteristic length scale of the problem.

Any system, of moving particles (bits) on a lattice, in which conservation of mass and
momentum are satisfied, will exhibit some form of fluid behavior. Depending on the un-
derlying lattice and the selection of collision operator, the behavior may not be exactly that
of a true physical fluid system as governed by the Navier–Stokes equation, but aspects of
the qualitative behavior of a fluid will still be valid. As an example, the Hardy, de Pazzis,
and Pomeau (HPP) LGA which adequately models linear acoustics (not considering vis-
cous damping) does not model the Navier–Stokes equation properly [6]. Such a system is
therefore inappropriate for accurately modeling fluid dynamics. However, the system may
still be appropriate as a model of linear acoustics, as governed by the linear wave equation.
Thus, ignoring the effect of an anisotropic viscosity, which will be discussed in Section IV,
the HPP automaton is capable of modeling linear wave behavior and many variations of the
HPP automaton are capable of modeling different sound speeds [7]. These HPP automata
are therefore also capable of modeling two-dimensional electromagnetism [8, 9]. However,
most practical EM field problems are three-dimensional for which the solution of Maxwell’s
equations is required.

Three-dimensional electromagnetism is described by thevectorwave equation, and con-
sequently an attempt to describe it using an acoustic analogy with onlyscalarwave phe-
nomena is insufficient. For three-dimensional EM field problems, rules capable of yielding
vector wave behavior are required where the macroscopic density and flow perturbations
of selected sets of particles within the LGA obey the coupled partial differential equation
form of Maxwell’s equations,

ε
∂ Ē

∂t
= ∇ × H̄ , µ

∂ H̄

∂t
= ∇ × Ē (1a)

whereĒ is the electric field vector,̄H is the magnetic field vector,ε is the permittivity, and
µ the permeability. In Cartesian coordinates (1a) can be expressed as
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There are a large variety of possible LGA mesh topologies, the complexity of which
depends on the fluid phenomena that is desired. Fortunately, simple lattice geometries
can be employed if solving three-dimensional scalar acoustics is the only requirement.
The simplest automaton capable of modeling the three-dimensional scalar wave equation
requires only six particles per cell, where each particle possesses a unit mass and travels
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with speed1l/1t (i.e., one mesh step,1l in one time step,1t). This automaton can be
considered as a three-dimensional version of the HPP automaton, where the lattice is aligned
with the Cartesian coordinates and consists of particles with identical mass and propagation
speed.

The four-particle and six-particle HPP automata possess sufficient isotropy to capture
wave behavior in two and three dimensions, respectively. Therefore, these automata are
capable of providing the appropriate linear wave behavior of electromagnetism, and the
only requirement is the augmentation of their capabilities to capture the vector nature of
Maxwell’s equations. The more complex face-centered hypercube (FCHC) lattice [6] used
for three-dimensional Navier–Stokes equations is not required here.

In the following section we outline several methods for representing EM fields on a
three-dimensional lattice. Although LGA could be devised to make use of all of these
representations, we select an expanded representation for the development of our automaton.
In Section III, a homogeneous description of the LGA collision operator is provided. In
Section IV, the validation of the LGA is described. In order to validate the automaton’s
ability to model Maxwell’s equations, we have simultaneously simulated TE and TM modes
within rectangular cavities for a given set of boundary conditions. Numerical results indicate
that the resonant frequencies of both TE and TM modes are accurately predicted. While
these numerical results validate our approach, we have not proved analytically that the
model reproduces Maxwell’s equations in the macroscopic limit. This proof is eventually
necessary and is a topic of our current research. In Section V we examine the computational
resources of the LGA and propose methods for improvement.

II. REPRESENTATION OF EM FIELDS ON A THREE-DIMENSIONAL LATTICE

The differential equation based computational EM literature contains a variety of ap-
proaches for the spatial organization of a unit cell. Several different strategies based on
these existing approaches for the spatial organization of the unit cell of our new LGA
have been considered. A method for representing EM fields on a spatial lattice is required
which accounts for the nature of LGA and enables efficient implementation in a fine-grain
computing architecture such as the CAM-8 cellular automata machine.

For all differential equation based methods, including LGA, the volume of space enclosing
the EM fields is discretized into unit cells. The spatial organization of the unit cell is closely
related to the method of discretization. It is, however, possible to use an arbitrary spatial cell
organization with a variety of discretization techniques (i.e., finite difference, finite element,
finite volume). Here, we classify the various spatial organizations of the unit cells in terms of
two parameters:symmetryandcondensation. A symmetriccell appears the same (in terms
of the vector components of the fields) from each coordinate axis. Acondensedcell has all
field components defined at the same spatial locations. A completely uncondensed cell has
only a single field component defined at a given spatial location, and a partially condensed
cell has some, but not all, field components defined at a given spatial location. Examples of
the spatial organizations of unit cells are presented in Fig. 1.

In the computational EM literature, many of the spatial organizations of unit cubic cells
shown in Fig. 1 have become associated with specific numerical discretization schemes. For
example, the expanded representation of Fig. 1a has become associated with the generic
term “finite difference time domain” [2]. However, such rigid association is not necessary
and it is possible to formulate finite difference algorithms based on all of the discretizations
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FIG. 1. Spatial organization of unit cubic cell. (a) Yee finite-difference algorithm [14] and the expanded
node transmission line matrix model [10] (unsymmetrical, uncondensed); (b) transmission line matrix algorithm
[11] and Shankar finite-volume algorithm [15] (symmetric, partially condensed); (c) nodal-based finite-element
method (symmetric, condensed); (d) edge-element finite-element methods (symmetric, partially condensed).

of Fig. 1. It is a more fundamental methodology to differentiate the mesh representation
from the numerical discretization. It is also possible to formulate TLM schemes with all of
the cells shown in Fig. 1. The original TLM scheme employs the spatial cell of Fig. 1a [10].
The so-called symmetric condensed node TLM scheme [11], which is actually partially
condensed, utilizes the unit cell of Fig. 1b. The three-dimensional extension of the hybrid
finite-element/TLM algorithm presented in [12] would require the unit cell of Fig. 1c.

Given the above classification of EM field representations on three-dimensional lattices,
our goal is to develop a LGA utilizing one of these spatial organizations. Current LGA are
based on the interaction of particles, which have the properties of mass, and due to their
direction of propagation, momentum. The automaton is based on the interaction of particles
having the properties of mass, momentum, and polarization. Each particle possessing a
ξ -polarization contributes to theξ component of the macroscopic electric field, where
ξ ∈ (x, y, z). The particles on this lattice would conserve mass and momentum and interact
according to their polarization. In this manner, the LGA appears as a TLM-like algorithm
in which single-bit variables are used.

An LGA implementation of thesymmetric-condensedlattice as shown in Fig. 1c with a
complete set ofξ -polarized particles at each spatial location and a unit cell would require
36 particles. A LGA implementation on thesymmetric, partially condensedlattice shown
in Fig. 1d would require 24 particles. The spatial organizations for these two cases with
required particles are provided in Fig. 2. Each node location(•) in Fig. 1c corresponds
with a spatial location at which the dashed lines intersect in Fig. 2a. The spatial locations in
Fig. 2a at which the particles are shown correspond to spatial locations half-way between
the nodes of Fig. 1c. The node location(•) in Fig. 1b corresponds with the intersection
of solid lines in Fig. 2b. The spatial locations in Fig. 2b at which the particles are shown
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FIG. 2. Spatial organization of unit cells including the required particles for the three-dimensional LGA cell
constructed from (a) the symmetric condensed cell of Fig. 1c requiring 36 particles, and (b) the symmetric partially
condensed cell of Fig. 1b requiring 24 particles.

correspond to spatial locations at which the tangential fields are defined in Fig. 1c. Since
only tangential fields are defined between nodal locations in Figs. 2b and 1b, only particles
carrying tangential fields are required.

A problem with both spatial organizations of Fig. 2 is that a fairly large number of bits
are required per unit cell. The main motivation for the LGA approach is to enable operation
as a fine-grain computing system and thus minimization of the number of bits per unit
cell is imperative. For example, the CAM-8 cellular automata machine performs collision
operations using a 16-bit look-up table and thus operates most efficiently on 16 bits of state
per site at any instant of time. Implementations involving cell sizes of more than 16 bits can be
accommodated by parsing the particle interactions into 16-bit operations, but this becomes
computationally cumbersome. In general, ann-bit collision process requires a 2n sized look-
up table. If ann-bit collision operator look-up table must be parsed in a brute-force manner
into 16-bit operations, 2m look-up tables are required for an m+ 16 bit collision operator.
It is therefore desirable to exploit any symmetries of the lattice or factorizations to parse
a collision operator involving more than 16 bits. For example, in [13] the implementation
of an FCHC LGA on CAM-8 is described. The FCHC LGA requires 24 particles per cell,
however, Adleret al. were able to split the 24-bit collision process into two 16-bit collision
events. Instead of searching for a similar reduction of the collision process for either of
the 36- or 24-bit automata of Fig. 2, we have selected anunsymmetrical, uncondensed(or
expanded) lattice. This reduces the number of bits required at each CAM-8 site to less than
16 bits. In fact, the number of particles per CAM-8 site is reduced to 8, if one site is assigned
to each electric or magnetic field component as shown in Fig. 1a. Therefore, 6 CAM-8 sites
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are required for a complete unit cell based on the spatial organization of Fig. 1a. The CAM-8
implementation of the automaton is described in Subsection III.3.

III. NEW THREE-DIMENSIONAL VECTOR LATTICE GAS

AUTOMATON FOR MAXWELL’S EQUATIONS

III.1. Spatial Organization of the New Automaton

The state of a cell at discrete (integer indexed) spatial locationsx= (x, y, z) in three-
dimensional space and at timet is given by
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or more concisely as

s(x, t) = B(x, t) = {b±±x(x, t), b
±
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}
,

where the particles of our automaton are described using binary variables,b±±ξ ∈ {0, 1}. The
± superscript denotes a positive or a negative particle, and±ξ denotes a particle travelling
in the±ξ direction, whereξ ∈ {x, y, z}. Equation (2) has been constructed using 12 particles
per lattice site. We will eventually show that due to the parity operators, only 8 particles are
required. In this document, since binary variables are used, the algebra utilizes the Boolean
AND, OR, and NOT operations. The operations, defined on two variablesa andb, areab
(AND), a + b (OR), ā (NOT). A site specific operator is not used in the description of
the particles. Here we only use a polarity (positive or negative particle) identifier and a
propagation direction identifier. Using this notation, we require additional information in
order to define the field quantities associated with the lattice particles.

The description given by Eq. (2) of the automaton allows particles to exist in all velocity
states at all spatial locations within the lattice. We will now define an expanded-style
unsymmetrical uncondensed lattice as in Fig. 1a using the 12-particle cell of (2). This
will be accomplished by defining parity operators which exclude particles from occupying
illegal states. The parity operators are defined as

pξ =
∥∥∥∥∥0 if ξ is even

1 if ξ is odd
for ξ ∈ (x, y, z). (3)

Based on the interpretation of the expanded mesh of Fig. 1a, eachE or H field site in the
lattice should be associated with specific “polarized” particles. For example,+ξ polarized
particles will be associated with+ superscripts and contribute to the macroscopicEξ field
component while−ξ polarized particles subtract from it, whereξ ∈ (x, y, z). To conform
to the expanded lattice, we restrict the particles to represent microscopic TEM propagators,
and therefore theξ direction is perpendicular to the direction of propagation of the±ξ
polarized particles. Based on this interpretation, the fields at the various spatial locations of
the expanded mesh can be defined as

Ex = px py p̄z

(
b++y + b+−y + b++z+ b+−z− b−+y − b−−y − b−+z− b−−z

)
+ px py pz

(
b++z− b+−z+ b−+z+ b−−z)+ px p̄y p̄z(−b++y + b+−y+ b−+y− b−−y

)
(4a)
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Ey = p̄x p̄y p̄z

(
b++x + b+−x + b++z+ b+−z− b−+x − b−−x − b−+z− b−−z

)
+ p̄x p̄y pz

(− b++z+ b+−z+ b−+z− b−−z

)+ px p̄y p̄z

(
b++x − b+−x − b−+x + b−−x

)
(4b)

Ez = p̄x py pz
(
b++x + b+−x + b++y + b+−y − b−+x − b−−x − b−+y − b−−y

)
+ p̄x p̄y pz

(
b++y − b+−y + b−+y + b−−y

)+ px py pz
(−b++x + b+−x + b−+x − b−−x

)
(4c)

Hx = p̄x p̄y pz
(
b++y + b+−y + b++z+ b+−z− b−+y − b−−y − b−+z− b−−z

)
+ p̄x p̄y p̄z

(−b++z+ b+−z+ b−+z− b−−z

)+ p̄x py pz
(+b++y − b+−y − b−+y + b−−y

)
(4d)

Hy = px py pz
(
b++x + b+−x + b++z+ b+−z− b−+x − b−−x − b−+z− b−−z

)
+ px py p̄z

(+b++z− b+−z− b−+z+ b−−z

)+ p̄x py pz
(−b++x + b+−x + b−+x − b−−x

)
(4e)

Hz = px p̄y p̄z

(
b++x + b+−x + b++y + b+−y − b−+x − b−−x − b−+y − b−−y

)
+ px py p̄z

(−b++y + b+−y − b−+y − b−−y

)+ p̄x p̄y p̄z

(−b++x + b+−x + b−+x − b−−x

)
. (4f)

The resulting expanded style mesh is as shown in Figs. 3 and 4.
In (2), there is no need to denote the field component to which the particle contributes,

since this is determined by the parity operator (3) and spatial coordinates of the site. A
valid propagation direction̂d for a particle at anEξ or Hξ site is any non-zero outcome
of the operationd̂× ξ̂ . Again, this is because the particles represent TEM propagators. To
illustrate our definitions of particles, four particles within a unit cell of the automaton are
provided in Fig. 4.

FIG. 3. Visualization of two cuts of the lattice in they− zplane. These cuts are atx= x01l andx= (x0+1)1l .
Both here and in Fig. 4, the solid lines indicate paths along which particles may propagate, and dashed lines indicate
paths along which particles may not propagate.
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FIG. 4. A single expanded three-dimensional cell indicating the spatial organization of theE and H field
sites and their relation to the particles. This expanded mesh implementation occupies a space of 23 CAM-8 sites.
PositiveEx andHy particles are shown propagating from theEx to Hy, andHy to Ex sites, respectively. Positive
Ez and Hx particles are shown propagating from theEz to Hx, andHx to Ez sites, respectively. The front face
(x= 0) and the back face (x= 1) can be seen as a portion of the planes of Fig. 3.

Two cuts through the lattice in they− z plane are shown in Fig. 3, and a complete unit
cell is provided in Fig. 4. The unit cell shown in Fig. 4 occupies a cube with a side length
of 21l . The distance from anEξ site to the next occurrence of anEξ site is 21l . In Figs. 3
and 4, the sites are labeled by the field component represented by a particular site. At anEξ
site, all the particles contribute to theξ -component of the electric field. A site is required
for each Cartesian component of the electric and magnetic fields(Ex, Ey, Ez, Hx, Hy, Hz).
For this particular automaton, only microscopic transverse electromagnetic (TEM) prop-
agators exist. Therefore,ξ -polarized particles do not travel in theξ direction. In both of
these figures, the solid lines indicate the presence of interconnections or paths along which
the particles travel. The dashed lines are placed for visualization to represent paths along
which particles are not allowed to travel. The intersections of dashed lines represent loca-
tions where particles are not allowed to exist. Because of this restriction, a specific spatial
organization of sites is required in order to connect the three electric and the three magnetic
field sites. This spatial organization is the expanded unsymmetrical spatial organization of
Fig. 1a. The site labels are given in terms of the parity operator (3) in Table I. Also provided
in Table I are the correspondence between net particle density (positive particles–negative
particles), net momentum, and field quantities. This additional information aids in the un-
derstanding of the field definitions (4). The two null sites are spatial locations at which
particles do not exist. An explanation of how the lattice of Fig. 3 and unit cell of Fig. 4
relate to the Cartesian representation of Maxwell’s equations (1b) is given at the end of
Subsection III.2.

III.2. Operation of the Automaton

Based on the above description of the geometry of the LGA, the operation of the LGA
can be now described in the usual manner in terms of collision and advection events [6].
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TABLE I

Specification of Site Locations in Terms of Parity Operators and Relevant

Electromagnetic Field Quantities

Site label px py pz Particle density x-momentum y-momentum z-momentum

Ex px = 1 py = 1 pz = 0 Ex NA −Hz Hy

Ey px = 0 py = 0 pz = 0 Ey Hz NA −Hx

Ez px = 0 py = 1 pz = 1 Ez −Hy Hx NA
Hx px = 0 py = 0 pz = 1 Hx NA Ez −Ey

Hy px = 1 py = 1 pz = 1 Hy −Ez NA Ex

Hz px = 1 py = 0 pz = 0 Hz Ey −Ex NA
Null px = 1 py = 0 pz = 1 NA NA NA NA
Null px = 0 py = 1 pz = 0 NA NA NA NA

The dynamics of the LGA are defined as

b±±ξ (x± cξ1l , t +1t) = b±±ξ (x, t)+ C±±ξ (B(x, t)), (5)

whereC±±ξ is the collision operator for the particles travelling in the±ξ direction, and
ξ ∈ (x, y, z). Equation (5) can be interpreted as defining the states of the lattice at time
t +1t in terms of the states at timet . Here, the particles propagate with speed 11l per1t .
This collision operator includes the effects of both the collision and the polarization event. In
order to separate the polarization and collision events intermediate variables are employed.
The intermediate variables are denoted as `b±±η, which are the bit values after the collision
operation, but before the polarization event. Therefore, the lattice dynamics can also be
defined as

b̀±±η(x± cη1l , t +1t) = b±±η(x, t)+ C̀±±η(B(x, t)) (6a)

b±±η(x, t) = T±±η(`B(x, t)), (6b)

where the operator `C describes the collision event without the polarization event, and the
operatorT describes the polarization event. HPP collision rules are applied [16], and using
the above notation, the collision event is given as

b̀±±x(x ±1l , y, z, t +1t) = b±±x(x, t)+ C̀±±x(B(x, t)), (7a)

b̀±±y(x, y±1l , z, t +1t) = b±±y(x, t)+ C̀±±y(B(x, t)), (7b)

b̀±±z(x, y, z±1l , t +1t) = b±±z(x, t)+ C̀±±z(B(x, t)), (7c)

where

C̀±±x(B(x, t)) = (px py pz+ p̄x p̄y p̄z)2
±
xz+ (px p̄y p̄z+ p̄x py pz)2

±
xy,

C̀±±y(B(x, t)) = (px p̄y p̄z+ p̄x py pz)2
±
yx + (px py p̄z+ p̄x p̄y pz)2

±
yz,

C̀±±z(B(x, t)) = (px py pz+ p̄x p̄y p̄z)2
±
zx+ (px py p̄z+ p̄x p̄y pz)2

±
zy,

and

2±ηξ =
(
b̄±+ηb̄

±
−ηb
±
+ξb
±
−ξ − b±+ηb

±
−ηb̄
±
+ξ b̄
±
−ξ
)
, whereη, ξ ∈ (x, y, z).
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The particle states in the definition for2±ηξ given above are evaluated at(x, t). The above
collision operator is homogeneous, thus is applicable at every spatial location throughout the
lattice. The parity operators,pξ , are used to specify the appropriate spatial locations at which
the appropriate particle interactions occur. These terms specify the spatial heterogeneity of
the lattice as shown in Figs. 3 and 4 within a homogeneous particle description (2).

It must be noted that in the description of the collision operator (7),+ξ particles do
not interact with−ξ particles andvice versa. The HPP collision operator defined in (7) as
2±ηξ is succinctly described as particles which do not interact, except for pairwise head-on
collisions; for pairwise head-on collisions, the resultant particles are transformed 90◦ to the
original pair [6].

Operation (6a) is applied at all sites within the lattice to obtain the values `b throughout
the entire mesh. These values are then transferred to adjacent sites, via the polarization
operation (6b), to obtain the new states of the automaton,b.

Again, due to the spatial organization shown in Figs. 3 and 4, the polarization event
is spatially heterogeneous and requires the parity operators in order to be described in a
homogeneous manner. The polarization event is given as

b±+x(x, t) = p̄y p̄z b̀±+x(x, t)+ py pz b̀∓+x(x, t)

b±−x(x, t) = py pz b̀±−x(x, t)+ p̄y p̄z b̀∓−x(x, t)

b±+y(x, t) = p̄x pz b̀±+y(x, t)+ px p̄z b̀∓+y(x, t)
(8a)

b±−y(x, t) = px p̄z b̀±−y(x, t)+ p̄x pz b̀∓−y(x, t)

b±+z(x, t) = px py b̀±+z(x, t)+ p̄x p̄y b̀∓+z(x, t)

b±−z(x, t) = p̄x p̄y b̀±−z(x, t)+ px py b̀∓−z(x, t).

Operation (8a) is invariant with respect to shifts in space or time, and can be rewritten as

b±+x(x +1l , y, z, t +1t)

= p̄y p̄z b̀±+x(x +1l , y, z, t +1t)+ py pz b̀∓+x(x +1l , y, z, t +1t)

b±−x(x −1l , y, z, t +1t)

= py pz b̀±−x(x −1l , y, z, t +1t)+ p̄y p̄z b̀∓−x(x −1l , y, z, t +1t)

b±+y(x, y+1l , z, t +1t)

= p̄x pz b̀±+y(x, y+1l , z, t +1t)+ px p̄z b̀∓+y(x, y+1l , z, t +1t)
(8b)

b±−y(x, y−1l , z, t +1t)

= px p̄z b̀±−y(x, y−1l , z, t +1t)+ p̄x pz b̀∓−y(x, y−1l , z, t +1t)

b±+z(x, y, z+1l , t +1t)

= px py b̀±+z(x, y, z+1l , t +1t)+ p̄x p̄y b̀∓+z(x, y, z+1l , t +1t)

b±−z(x, y, z−1l , t +1t)

= p̄x p̄y b̀±−z(x, y, z−1l , t +1t)+ px py b̀∓−z(x, y, z−1l , t +1t).
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We can now substitute (7) into the above polarization event (8b), to obtain

b±+x(x +1l , y, z, t +1t) = p̄y p̄z

(
b±+x(x, t)+ C̀±+x

)+ py pz
(
b∓+x(x, t)+ C̀∓+x

)
b±−x(x −1l , y, z, t +1t) = py pz

(
b±−x(x, t)+ C̀±−x

)+ p̄y p̄z

(
b∓−x(x, t)+ C̀∓−x

)
b±+y(x, y+1l , z, t +1t) = p̄x pz

(
b±+y(x, t)+ C̀±+y

)+ px p̄z

(
b∓+y(x, t)+ C̀∓+y

)
(9)

b±−y(x, y−1l , z, t +1t) = px p̄z

(
b±−y(x, t)+ C̀±−y

)+ p̄x pz
(
b∓−y(x, t)+ C̀∓−y

)′
b±+z(x, y, z+1l , t +1t) = px py

(
b±+z(x, t)+ C̀±+z

)+ p̄x p̄y

(
b∓+z(x, t)+ C̀∓+z

)
b±−z(x, y, z−1l , t +1t) = p̄x p̄y

(
b±−z(x, t)+ C̀±−z

)+ px py
(
b∓−z(x, t)+ C̀∓−z

)
.

In order to obtain the dynamics of the form (5), we have to rearrange the terms in (9).
Rearranging the collision event forb±+x yields

b±+x(x+1l , y, z, t +1t)

= p̄y p̄z

(
b±+x(x, t)+ C̀±+x

)+ py pz
(
b∓+x(x, t)+ C̀∓+x

)
= p̄y p̄zb

±
+x(x, t)+ p̄y p̄z C̀±+x + py pz

(
b∓+x(x, t)+ C̀∓+x

)
= (1−py pz)b

±
+x(x, t)+ (1−py pz) C̀±+x + py pz

(
b∓+x(x, t)+ C̀∓+x

)
. (10)

Adding and subtractingpy pzb±+x(x, t) from the RHS of (10) yields the appropriate form of
the collision operator,

b±+x(x +1l , y, z, t +1t) = b±+x(x, t)+ C±+x, (11a)

where

C±+x = p̄y p̄z C̀±+x + (1− p̄y p̄z)
(
b∓+x(x, t)− b±+x(x, t)+ C̀∓+x

)
. (12a)

Similarly for the other particles,

b±−x(x −1l , y, z, t +1t) = b±−x(x, t)+ C±−x

b±+y(x, y+1l , z, t +1t) = b±+y(x, t)+ C±+y

b±−y(x, y−1l , z, t +1t) = b±−y(x, t)+ C±−y (11b)

b±+z(x, y, z+1l , t +1t) = b±+z(x, t)+ C±+z

b±−z(x, y, z−1l , t +1t) = b±−z(x, t)+ C±−z,

where

C±−x = py pz C̀±−x + (1− py pz)
(
b∓−x(x, t)− b±−x(x, t)+ C̀∓−x

)
C±+y = p̄x pz C̀±+y + (1− p̄x pz)

(
b∓+y(x, t)− b±+y(x, t)+ C̀∓+y

)
C±−y = px p̄z C̀±−y + (1− px p̄z)

(
b∓−y(x, t)− b±−y(x, t)+ C̀∓−y

)
(12b)

C±+z = px py C̀±+z+ (1− px py)
(
b∓+z(x, t)− b±+z(x, t)+ C̀∓+z

)
C±−z = p̄x p̄y C̀±−z+ (1− p̄x p̄y)

(
b∓−z(x, t)− b±−z(x, t)+ C̀∓−z

)
.
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FIG. 5. The junction between two cells displaying±Ez and±Hy particles.

A particular example of the polarization event (8a) required to link all of the lattice sites
that represent different electric and magnetic field components is provided in Fig. 5. Two
adjacent sites in thex− y plane are shown in Fig. 5 (anHy and anEz cell). At the junction
between these sites, an operation is required to ensure consistent polarization as particles
pass to an adjacent site. For instance, a positiveEz particle travelling in the+x direction
is transformed into a negativeHy particle when it enters theHy site as shown in Fig. 5a.
Similarly, a negativeEz particle travelling in the+x direction is transformed into a positive
Hy particle when it enters theHy site as shown in Fig. 5b. A positive (negative)Hy particle
travelling in the−x direction remains a positive (negative) particle upon entering theEz

site. The special case of a single particle propagating through the lattice in the+x direction
is provided in Fig. 6. There are no other particles at the lattice sites and therefore following
the HPP collision operation (embedded within (7)) the particle propagates through the mesh
undisturbed. The particle exists as a positive particle at theEz site at timet. It is transformed
into a negative particle existing at theHy site at timet +1t , and subsequently becomes a
positive particle at theEz site at timet+21t . Note that this special case is used to illustrate
the transfer event and does not represent a configuration of the mesh that would lead to a
particle solution of an EM field problem.

Each of the six sites which comprise the unit cell (labelled asEx, Ey, Ez, Hx, Hy, Hz in
Fig. 4), can be considered to model one of the six expressions in the Cartesian representation
of Maxwell’s equations (1b). For instance, the expression∂Ex/∂t = (1/ε)(∂Hz/∂y− ∂Hy/

∂z) can be considered to be represented by theEx field site. TheEx field component in the
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FIG. 6. Visualization of a single particle propagating through the mesh on successive time steps.

expression is linked to theHy andHz fields. In the unit cell of Fig. 4, the sites representing
Hy andHz are adjacent to theEx site. The transformation events linking adjacent sites can
be thought of as providing coupling between the six expressions representing the expression
of Maxwell’s equations in Cartesian coordinates. The dynamics of the automaton conserve
each of the scalar components of the electric and magnetic fields. The conservation of these
quantities is observed through inspection of the collision operator and the polarization event
with respect to the definitions for the field quantities (4) indicates that.

III.3. CAM-8 Cellular Automata Machine Implementation

All of our computational investigations of cellular automata utilize the CAM-8 cellular
automata machine [1]. CAM-8 can be considered as a personal cellular automata super-
computer and consists of about 2 MBytes of SRAM and 64 MBytes of DRAM. A SUN
workstation acts as its host. The machine is capable of performing 200M site updates per
second on a space of 32M sites.

The updating of sites is performed by table look-up. The binary variables which belong
to a particular 16-bit site are passed from DRAM memory through a look-up table stored
in SRAM, and then placed back into the same DRAM memory location. Movement of
data corresponding to the bit-fields within the site is accomplished through DRAM address
manipulation. For the case of CAM-8 evaluation of a LGA, the collision operator is compiled
into a look-up table and the advection events performed via DRAM address manipulation [1].

To implement the LGA described in Subsections III.1 and III.2, each field location in the
mesh is assigned to an individual CAM-8 site. The allocation of bits used to encode the LGA
is shown in Table II. Note that for this initial implementation we exceed the first subcell by
1 bit, and therefore require the use of a single additional subcell. This leaves plenty of bits
available in the second subcell for implementing rest particles, material markers, source
markers, random bits, etc.

The implementation described in Table II is selected to minimize computational com-
plexity, although it is inefficient in terms of memory storage. For instance, at anEx site, there
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TABLE II

Bit Allocations for CAM-8 Implementation

Bits Usage

Subcell 0
0–3 x-directed moving particles
4–7 y-directed moving particles
8–11 z-directed moving particles

12–14 Three-bit cell marker (6 types of cells,Ex, Ey, . . . , Hz)
15 PEC boundary marker
0–7 Also reused as counting bits

Subcell 1
0–14 Not used
15 Marker for counting window

exists 8 moving particles (see Fig. 4)b±±y(x, t), b
±
±z(x, t). However, 12 bits are allocated

in Table II to describe this site resulting in 4 unoccupied bits per site. As well, allocating
each field location to a CAM-8 site, and hence using a marker to denote the site type, is
also wasteful. The LGA cell of Fig. 4 requires a 2 by 2 by 2 region of CAM-8 sites. Two of
every eight CAM-8 cells contain a null-cell at which there never exists information.

Although memory inefficient, the implementation described above is relatively easy to
develop in a programming sense. Data movement is easily accomplished. The algorithm is
easily parsed into different look-up tables for boundary condition implementation, particle
collisions, intercell polarization operations, and event-counting. Separation of these events,
with a single data transfer event between the collision and event counting table scans,
allows for easy testing. In the final implementation, in order to improve computational
speed only two look-up tables and therefore two scans of the computational space are
required. One is to perform the boundary condition implementation, particle collisions, and
intercell polarization operations, and the other is for the event counting.

Both perfect electric conducting (PEC) and perfect magnetic conducting (PMC) boundary
conditions have been implemented. These are enforced through locally setting the tangential
electric (for PEC) and tangential magnetic (for PMC) fields equal to zero. An electric
(magnetic) field component at anEξ (Hξ ) site is set to zero by reversing the polarization
of the positive and negative particles.

One possible assignment of the three-bit cell marker is

Marker bits Field component

0 0 0 Ex

0 0 1 Hx

0 1 0 Ey

0 1 1 Hy

1 0 0 Ez

1 0 1 Hz

1 1 0 Null
1 1 1 Null
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TABLE III

Percent Error in Resonant Frequency Predicted by the LGA Simulation

of TE and TM Modes [17]

Simulation Modes Size of space % error TE, TM solution

1 TE111, TM111 (128)3 0.12, 0.12
2 TE121, TM222 (128)3 0.08, 0.12
3 TE121, TM222 (128, 128, 256) 0.82, 0.12
4 TE112, TM321 (128, 128, 256) 0.15, 0.27
5 TE111, TM221 (256, 256, 128) 0.75, 0.09

IV. NUMERICAL VALIDATION

In this section, the LGA is validated through calculations of the resonant frequencies
of various cavities. The first problem considered is the simultaneous solution of both TE
and TM modes within a rectangular PEC cavity. TE or TM modes within a rectangular
PEC cavity can be individually described by their scalar potential functions,ϕTE

mnp and
ϕTM

mnp (13) [17], with appropriate boundary conditions imposed on them. These bound-
ary conditions can be enforced through setting the tangential component of the elec-
tric field to zero on the cavity walls. This condition is imposed differently on the two
scalar potential functions, since the components of the electric fields are derived differ-
ently (see (13a) and (13b)). Therefore, a simulation involving both TE and TM modes
with boundary conditions enforced on the field components cannot yield correct results
without the capability of solving Maxwell’s equations. In Table III, results obtained from
various simulations are provided. To compute the resonant frequencies, a discrete Fourier
transformation of the transient response was computed and peaks in the frequency spec-
trum were identified with the various modes. In each simulation, TE and TM modes are
excited within cavities of various sizes, and the resonant frequencies are compared to
the exact solutions. The results indicate that the resonant frequencies of the TE and TM
modes are accurately predicted by our LGA for a variety of different mode numbers and
simulation space sizes. The errors provided in Table III are less than one percent. The
results were obtained from single LGA simulations. Ensemble averaging of LGA sim-
ulations might improve the predicted resonant frequencies. Ensemble averaging is more
efficient than space-time averaging in the postprocessing of LGA results. Examination of
the field distributions produced by the LGA would be efficiently examined using ensemble
averaging.

The present capacity of our machine is 64 MBytes and therefore permits a maximum
space size of (256 CAM-8 sites)3→ 256∗ 256∗ 256∗ (2sites) ∗ 2 Bytes/site∼64 MBytes.
This refers specifically to CAM-8 sites. The number of LGA unit cells (as displayed in
Fig. 4) is therefore 1283. The simulations were run for 4,000 time steps.

The initial conditions for each analysis were enforced through the specification ofHz

and Ez field distributions throughout the simulation space. The distribution function for
TM mnp andTE mnp modes with subsequent definitions for the electric and magnetic field
components are [17]
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ϕTM
mnp= sin

(
mπx

a

)
sin

(
nπy

b

)
cos

(
pπz

c

)
; m, n = 1, 2, . . . ; p = 0, 1, 2, . . .

Ex = 1

ŷ

∂2ϕ

∂x ∂z
, Ey = 1

ŷ

∂2ϕ

∂y ∂z
, Ez = 1

ŷ

(
∂2

∂z2
+ k2

)
ϕ (13a)

Hx = ∂ϕ

∂y
, Hy = ∂ϕ

∂x
, Hz = 0

and

ϕTE
mnp= cos

(
mπx

a

)
cos

(
nπy

b

)
sin

(
pπz

c

)
;

m, n = 0, 1, 2, . . . ; p = 1, 2, . . . ,m= n 6= 0

Ex = −∂ϕ
∂y
, Ey = ∂ϕ

∂x
, Ez = 0 (13b)

Hx = 1

ẑ

∂2ϕ

∂x ∂z
, Hy = 1

ẑ

∂2ϕ

∂y ∂z
, Hz = 1

ẑ

(
∂2

∂z2
+ k2

)
ϕ,

respectively, wherêy = jωµ, ẑ= jωε, andk=π
√
(m/a)2+ (n/b)2+ (p/c)2.

We have also analyzed a finned waveguide using the LGA. Although this is actually a
two-dimensional problem, we have utilized the three-dimensional automaton to analyze
it. The fin-line cross-section is aligned in thex− y plane, and a short simulation space
in the z direction is used (with a wrap-around boundary condition used to terminate the
z=minimum andz=maximum planes). A complete description of these numerical simu-
lations is provided in [9]. The problem has been previously investigated with the symmetric
condensed node (SCN) TLM algorithm by Herring and Hoefer [18]. The geometry is speci-
fied bya= 2b, and the resonant frequency is computed for various gap sizes,d. A benchmark
solution was obtained through the use of the SCN-TLM algorithm with a lattice size of 256
by 1281l [19]. The results are summarized in Fig. 7, and indicate possible values for the
LGA to TLM mesh ratios. This problem is an interesting one to carry out a meaningful
comparison on because it is simple enough to allow rigorous computational investigation,
yet clearly distinguishes between dispersive errors and errors due to imperfect modeling of
a spatial field distribution. The discretizations (for the TLM and FDTD analysis) are such
that numerical dispersion should be minimal. As discussed, the LGA results are free of
numerical dispersion; however, they possess numerical dissipation, similar to that due to
Lax–Wendroff style finite-difference or finite-element algorithms [20]. The errors in the
determination of cut-off frequency demonstrated in Fig. 7 are due to the inability of the
algorithms to accurately predict the behavior of the EM field distribution around the fin. As
expected, as the gap size increases (size of the fin decreases), the errors for all discretizations
are minimized. We can see in Fig. 7 that the solutions for a TLM mesh of 32 by 16 cells
provides the same accuracy as a LGA mesh of 2048 by 1024 CAM-8 sites. The 2048 by
1024 CAM-8 sites correspond with 1024 by 512 LGA cells, and therefore the ratio of LGA
to TLM cells required for equivalent accuracy is approximately 30 : 1 per linear dimension
of the problem.

The final problem examined is a short cylindrical perfect electric conducting (PEC)
cavity. This particular problem adds the twist of requiring a stair-stepped discretization of
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FIG. 7. Percent error in determination of the resonant frequency of the dominant mode versus gap size for
various TLM and LGA simulations utilizing different mesh spacing.

the cylindrical surface. This problem is convenient since an analytic solution exists. The
cylinder was embedded within a CAM-8 space of size 128 by 128 by 8 sites. The LGA
results are compared to stair-stepped FDTD results provided in [21]. The spatial cell size
within the automaton is 0.01 m, as compared to 0.05 m within the FDTD results provided by
[21]. This 5 : 1 LGA to FDTD mesh ratio is much smaller than that indicated by the finned
waveguide analysis. It should be noted that a stair-stepped FDTD analysis does not represent
the current state-of-the-art. In fact, the results provided in [21] were actually presented in
order to demonstrate the accuracy of their conformal-style algorithm which reduces stair-
stepping errors. Their “corrected” resonant frequencies differ from the analytic results by
less than 0.1%. We compare the LGA to the stair-stepped FDTD results here to indicate
one advantage of the fine discretization required by the LGA (see Table IV). The special
treatment of curved PEC boundaries and perhaps even curved material boundaries (which

TABLE IV

Comparison of % Error in LGA Results and Stair-Stepped

FDTD Results from [21]

Diameter (m) % error LGA % error stair-stepped FDTD

1.00 0.29 2.53
1.03 0.36 2.38
1.05 0.46 4.36
1.07 0.76 3.18
1.10 0.46 1.95
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have not received a lot of attention) is not necessary within LGA. Fitting a numerical
mesh to a geometrically complex object is not a simple task. Due to the extremely fine
spatial discretization associated with LGA, accurate spatial description of PEC boundaries
is achieved by default.

Moreover, all of the results indicate that the numerical dispersion of the LGA is very
small, for the discretization we have selected. However, numerical dissipation is present in
all of these simulations, in the form of a bulk viscosity. This is a result of using fluid-like
collision rules (HPP collisions). As expected, the viscosity we have observed is anisotropic
[6], and, examining the decay of various modes in various sized simulation spaces indicates
it is in the range of 0.07 to 0.501l 2/1t .

The results of this section indicate the success of the LGA to compute solutions to EM
field problems. The present validation does not, however, prove that the LGA is a consistent
or convergent method for solving Maxwell’s equations. In this paper we have not proved
analytically that the model reproduces Maxwell’s equations in the macroscopic limit. This
proof is eventually necessary and is a topic of our current research [22].

In this paper, we have only addressed EM field problems with homogeneous material
properties. Most general problems will possess heterogeneous material regions. We have
modeled EM wave interaction with complex heterogeneous objects including a human body
cross section in two dimensions using LGA [7, 8]. The LGA described in [7, 8] is based
on the addition of rest particles to the HPP automaton. These modified HPP LGA can be
implemented in the same way as the standard HPP automata have been implemented in this
paper, in order to obtain an LGA for modeling heterogeneous three-dimensional EM field
problems.

The increased mesh density required by the LGA is largely due to the presence of nu-
merical viscosity. The viscosity has a large impact on problems with rapid spatial variation
of the field distributions. These variations occur in the vicinity of sharp edges such as that
encountered with the finned waveguide which results in a LGA to TLM cell ratio of 30 : 1.
Although we are utilizing only single-bit variables such an increase in mesh density will
result in impractical memory requirements. The reduction of this viscosity is extremely
important for the practical application of LGA for EM field modeling. We have investigated
integer LGA (ILGA) utilizing low-precision integer variables (4 bits per variable). The-
oretical and numerical investigation of these ILGA have indicated a significant decrease
in the LGA mesh density required for the finned waveguide problem (from 30 : 1 to 3 : 1
[23, 24]). This results in a decrease in the number of cells by a factor of one thousand.
This development allows for the practical application of LGA to the modeling of spatially
heterogeneous three-dimensional EM field problems.

V. CONCLUSIONS

In this paper, we describe a LGA for modeling three-dimensional EM field problems.
The automaton utilizes particles which possess mass, momentum, and polarization. Con-
servation of mass and momentum is maintained through utilization of HPP collision events
at individual sites, and polarization transformations are applied to maintain correct polar-
ization information for particles travelling to adjacent sites. The new automaton utilizes an
expanded spatial cell representation which allows for reasonably simple implementation
on a CAM-8 machine. This three-dimensional interconnection of two-dimensional cells is
reminiscent of that utilized by the Yee FDTD algorithm [14], the expanded TLM algorithm
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[10], and the spatial network method [25]. The numerical results indicate the success of the
automaton in analyzing three-dimensional EM field problems.
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