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A lattice gas automaton (LGA) capable of modeling Maxwell’'s equations in three
dimensions is described. The automaton is a three-dimensional interconnection of
two-dimensional LGA cells, with appropriate operations at the junctions between
cells to include the properties of polarization. A homogeneous mathematical de-
scription of the heterogeneous three-dimensional automaton is provided in terms
of the underlying binary variables. The dynamics of the automaton conserve the
scalar components of the electric and magnetic fields. The implementation of the
automaton on the CAM-8 cellular automata machine is described. The LGA has
been validated through calculation of resonant frequencies within various cavities.
The numerical results indicate the success of the automaton in analyzing three-
dimensional EM field problems. We have not proven analytically that this model
reproduces Maxwell's equations in the macroscopic limit, as this is a topic of future
study. © 1999 Academic Press

Key Words:computational electromagnetics; lattice gas automata.

I. INTRODUCTION

Our goal is not only to solve Maxwell’s equations, but to accomplish this using lo
precision integer arithmetic. Our motivation is that this style of algorithm is ideally suite
for implementation on fine-grain parallel computers. Special purpose fine-grain compult
architectures, such as the CAM-8 cellular automata machine, already exist [1]. Operat
within these types of architectures require very few bits of memory, and simple logi
hardware or look-up tables can be used for fast evaluation. This approach is unlike the
number finite difference time domain (FDTD) [2], finite element (FE) [3], or transmissic
line matrix (TLM) [4] methods that have been widely applied to the solution of spatially he
erogeneous electromagnetic (EM) field problems. These algorithms require floating p
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processors. Lattice gas automata (LGA) have been previously developed for modelinc
behavior of complex fluids [5] and are extremely well suited for execution on machin
such as CAM-8. LGA are represented by an extremely large regular lattice of interconne:
cells. The cells are very simple, usually with only a few bits being used to define all possi
operating states, and are updated in synchronism according to the same deterministic
that is local spatially and temporally. In this paper, a LGA for Maxwell's equations is pr
sented. The approach is applicable to “resonant” EM field problems where the waveler
of interest is on the same order as the characteristic length scale of the problem.

Any system, of moving particles (bits) on a lattice, in which conservation of mass a
momentum are satisfied, will exhibit some form of fluid behavior. Depending on the u
derlying lattice and the selection of collision operator, the behavior may not be exactly t
of a true physical fluid system as governed by the Navier—Stokes equation, but aspec
the qualitative behavior of a fluid will still be valid. As an example, the Hardy, de Pazz
and Pomeau (HPP) LGA which adequately models linear acoustics (not considering
cous damping) does not model the Navier—Stokes equation properly [6]. Such a syste
therefore inappropriate for accurately modeling fluid dynamics. However, the system r
still be appropriate as a model of linear acoustics, as governed by the linear wave equa
Thus, ignoring the effect of an anisotropic viscosity, which will be discussed in Section |
the HPP automaton is capable of modeling linear wave behavior and many variations o
HPP automaton are capable of modeling different sound speeds [7]. These HPP auto
are therefore also capable of modeling two-dimensional electromagnetism [8, 9]. Howe
most practical EM field problems are three-dimensional for which the solution of Maxwel
equations is required.

Three-dimensional electromagnetism is described byelktrwave equation, and con-
sequently an attempt to describe it using an acoustic analogy withsoalgir wave phe-
nomena is insufficient. For three-dimensional EM field problems, rules capable of yield
vector wave behavior are required where the macroscopic density and flow perturbat
of selected sets of particles within the LGA obey the coupled partial differential equati
form of Maxwell’s equations,

JE - aH -
—— —VxH — =VxE la
“at T R x (1a)

whereE is the electric field vectoH is the magnetic field vectas,is the permittivity, and
u the permeability. In Cartesian coordinates (1a) can be expressed as

9E, 1(8HZ aHy) 8Ey_1(8HX aHZ) 8Ez_1(8Hy 8Hx>

at  e\ay 9z at e\ dz  ox at e\ ax  ay
(1b)

oM _1(0E, OE)  dHy _1(9E, 0B dH, _1(9E, 0E,

at o\ oz ay )’ at o\ ax 9z )’ ot p\ ay ax /)’

There are a large variety of possible LGA mesh topologies, the complexity of whi
depends on the fluid phenomena that is desired. Fortunately, simple lattice geome
can be employed if solving three-dimensional scalar acoustics is the only requirem
The simplest automaton capable of modeling the three-dimensional scalar wave equi
requires only six particles per cell, where each particle possesses a unit mass and tr
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with speedAl /At (i.e., one mesh ste@l in one time stepAt). This automaton can be
considered as athree-dimensional version of the HPP automaton, where the lattice is ali
with the Cartesian coordinates and consists of particles with identical mass and propags
speed.

The four-particle and six-particle HPP automata possess sufficient isotropy to cap
wave behavior in two and three dimensions, respectively. Therefore, these automate
capable of providing the appropriate linear wave behavior of electromagnetism, and
only requirement is the augmentation of their capabilities to capture the vector nature
Maxwell's equations. The more complex face-centered hypercube (FCHC) lattice [6] u:
for three-dimensional Navier—Stokes equations is not required here.

In the following section we outline several methods for representing EM fields on
three-dimensional lattice. Although LGA could be devised to make use of all of the
representations, we select an expanded representation for the development of our auton
In Section 1ll, a homogeneous description of the LGA collision operator is provided.
Section IV, the validation of the LGA is described. In order to validate the automator
ability to model Maxwell’'s equations, we have simultaneously simulated TE and TM moc
within rectangular cavities for a given set of boundary conditions. Numerical results indic:
that the resonant frequencies of both TE and TM modes are accurately predicted. W
these numerical results validate our approach, we have not proved analytically that
model reproduces Maxwell’s equations in the macroscopic limit. This proof is eventua
necessary and is a topic of our current research. In Section V we examine the computati
resources of the LGA and propose methods for improvement.

Il. REPRESENTATION OF EM FIELDS ON A THREE-DIMENSIONAL LATTICE

The differential equation based computational EM literature contains a variety of ¢
proaches for the spatial organization of a unit cell. Several different strategies basec
these existing approaches for the spatial organization of the unit cell of our new L
have been considered. A method for representing EM fields on a spatial lattice is requ
which accounts for the nature of LGA and enables efficient implementation in a fine-gr:
computing architecture such as the CAM-8 cellular automata machine.

For all differential equation based methods, including LGA, the volume of space enclos
the EM fields is discretized into unit cells. The spatial organization of the unit cell is close
related to the method of discretization. It is, however, possible to use an arbitrary spatial
organization with a variety of discretization techniques (i.e., finite difference, finite eleme
finite volume). Here, we classify the various spatial organizations of the unit cells in terms
two parameterssymmetryandcondensationA symmetriccell appears the same (in terms
of the vector components of the fields) from each coordinate axienfiensedell has all
field components defined at the same spatial locations. A completely uncondensed cel
only a single field component defined at a given spatial location, and a partially conden
cell has some, but not all, field components defined at a given spatial location. Example
the spatial organizations of unit cells are presented in Fig. 1.

In the computational EM literature, many of the spatial organizations of unit cubic ce
shown in Fig. 1 have become associated with specific numerical discretization schemes
example, the expanded representation of Fig. 1a has become associated with the ge
term “finite difference time domain” [2]. However, such rigid association is not necesse
and it is possible to formulate finite difference algorithms based on all of the discretizatic
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FIG. 1. Spatial organization of unit cubic cell. (a) Yee finite-difference algorithm [14] and the expandk
node transmission line matrix model [10] (unsymmetrical, uncondensed); (b) transmission line matrix algori
[11] and Shankar finite-volume algorithm [15] (symmetric, partially condensed); (c) nodal-based finite-elem
method (symmetric, condensed); (d) edge-element finite-element methods (symmetric, partially condensed

of Fig. 1. It is a more fundamental methodology to differentiate the mesh representa
from the numerical discretization. It is also possible to formulate TLM schemes with all
the cells shown in Fig. 1. The original TLM scheme employs the spatial cell of Fig. 1a [1
The so-called symmetric condensed node TLM scheme [11], which is actually partie
condensed, utilizes the unit cell of Fig. 1b. The three-dimensional extension of the hyt
finite-element/TLM algorithm presented in [12] would require the unit cell of Fig. 1c.

Given the above classification of EM field representations on three-dimensional lattic
our goal is to develop a LGA utilizing one of these spatial organizations. Current LGA &
based on the interaction of particles, which have the properties of mass, and due to
direction of propagation, momentum. The automaton is based on the interaction of parti
having the properties of mass, momentum, and polarization. Each particle possessi
&-polarization contributes to the component of the macroscopic electric field, where
& € (X, Y, 2). The particles on this lattice would conserve mass and momentum and intel
according to their polarization. In this manner, the LGA appears as a TLM-like algoritf
in which single-bit variables are used.

An LGA implementation of theymmetric-condensddttice as shown in Fig. 1¢ with a
complete set of -polarized particles at each spatial location and a unit cell would requi
36 particles. A LGA implementation on tleymmetri¢ partially condensedhttice shown
in Fig. 1d would require 24 particles. The spatial organizations for these two cases v
required particles are provided in Fig. 2. Each node locatirin Fig. 1c corresponds
with a spatial location at which the dashed lines intersect in Fig. 2a. The spatial location
Fig. 2a at which the particles are shown correspond to spatial locations half-way betw
the nodes of Fig. 1c. The node locatio#) in Fig. 1b corresponds with the intersection
of solid lines in Fig. 2b. The spatial locations in Fig. 2b at which the particles are sho
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\

FIG. 2. Spatial organization of unit cells including the required particles for the three-dimensional LGA c
constructed from (a) the symmetric condensed cell of Fig. 1c requiring 36 particles, and (b) the symmetric part
condensed cell of Fig. 1b requiring 24 particles.

correspond to spatial locations at which the tangential fields are defined in Fig. 1c. Si
only tangential fields are defined between nodal locations in Figs. 2b and 1b, only parti
carrying tangential fields are required.

A problem with both spatial organizations of Fig. 2 is that a fairly large number of bi
are required per unit cell. The main motivation for the LGA approach is to enable operat
as a fine-grain computing system and thus minimization of the number of bits per L
cell is imperative. For example, the CAM-8 cellular automata machine performs collisi
operations using a 16-bit look-up table and thus operates most efficiently on 16 bits of s
per site atany instant of time. Implementations involving cell sizes of more than 16 bits car
accommodated by parsing the particle interactions into 16-bit operations, but this beco
computationally cumbersome. In generalpdpit collision process requires 8 &ized look-
up table. If am-bit collision operator look-up table must be parsed in a brute-force mann
into 16-bit operations, 2 look-up tables are required for an+1l6 bit collision operator.

It is therefore desirable to exploit any symmetries of the lattice or factorizations to pa
a collision operator involving more than 16 bits. For example, in [13] the implementati
of an FCHC LGA on CAM-8 is described. The FCHC LGA requires 24 patrticles per ce
however, Adleet al. were able to split the 24-bit collision process into two 16-bit collisior
events. Instead of searching for a similar reduction of the collision process for either
the 36- or 24-bit automata of Fig. 2, we have selectedrssymmetrical, uncondenséar

expanded) lattice. This reduces the number of bits required at each CAM-8 site to less
16 bits. In fact, the number of particles per CAM-8 site is reduced to 8, if one site is assig!
to each electric or magnetic field component as shown in Fig. 1a. Therefore, 6 CAM-8 s
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are required for a complete unit cell based on the spatial organization of Fig. 1a. The CAl
implementation of the automaton is described in Subsection 111.3.

IIl. NEW THREE-DIMENSIONAL VECTOR LATTICE GAS
AUTOMATON FOR MAXWELL'S EQUATIONS

[ll.1. Spatial Organization of the New Automaton

The state of a cell at discrete (integer indexed) spatial locatieasx, y, z) in three-
dimensional space and at timés given by
bt (x,t), bt (x,t), b (x, 1), b¥ (X, 1), bT (X, t), b* (X, 1),
) B(X’t):{ T (. 1), b, (x, 1), bT,(x, 1), b, (x, 1), b, (x, 1), b, (x, 1) } @

bl (X, 1), by (X, 1), b, (X, 1), b=, (X, ), b=, (X, 1), bZ,(X, t)
or more concisely as
s(x, t) = B(x, t) = {bL, (X, t), by, (X, t), by, (x. t) },

where the particles of our automaton are described using binary varibjjges{o, 1}. The

=+ superscript denotes a positive or a negative particlefgndenotes a particle travelling
inthe+¢ direction, wheré € {x, y, z}. Equation (2) has been constructed using 12 particle
per lattice site. We will eventually show that due to the parity operators, only 8 particles
required. In this document, since binary variables are used, the algebra utilizes the Boc
AND, OR, and NOT operations. The operations, defined on two varialbéeslb, areab
(AND), a + b (OR), a (NOT). A site specific operator is not used in the description o
the particles. Here we only use a polarity (positive or negative particle) identifier anc
propagation direction identifier. Using this notation, we require additional information
order to define the field quantities associated with the lattice particles.

The description given by Eq. (2) of the automaton allows particles to exist in all veloci
states at all spatial locations within the lattice. We will now define an expanded-st
unsymmetrical uncondensed lattice as in Fig. 1a using the 12-particle cell of (2). T
will be accomplished by defining parity operators which exclude particles from occupyi
illegal states. The parity operators are defined as

0 if £ is even

_ f v.2). 3
Pe=1  ifrisoad & Y? @)

Based on the interpretation of the expanded mesh of Fig. 1aFearcH field site in the
lattice should be associated with specific “polarized” particles. For examgleplarized
particles will be associated with superscripts and contribute to the macroscdgidield
component while-¢ polarized particles subtract from it, wheye (x, y, z). To conform
to the expanded lattice, we restrict the particles to represent microscopic TEM propaga
and therefore thé direction is perpendicular to the direction of propagation of it
polarized particles. Based on this interpretation, the fields at the various spatial locatior
the expanded mesh can be defined as

Ex = Pxpy 5z(biy + bJ—ry + biz + bJ—rz - b;y - b:y - b;z - b:z)
+ Px Py Pz (b}, — bF, + by, + b7, + pxpy p,(—bf, + b, +bi, —b")) (4a)
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Ey = ﬁx 5y 52 (bix + bi_x + biz + bi_z - b-_f-x - b:x - b;z - b:z)

+ ﬁx 5y pZ( - b-tz + btz + b;z - b:z) + Px 5y 5z(bix - bi_x - b;x + b:x) (4b)
E; = Pybypz(b], +bF, +bf, +bf, —by, —b-, —by, —b")

+ Py Py Pz (b}, — bty + by, +b7)) + pxpypz(—bl, + b, + by, —b7,) (40
Hx = PyPy Pz (b}, + b’y +bt, + b, — by, —b”, — by, —b,)

+ PyPy P (—bf, +bX, + b, —bZ,) + Pepyp(+bL, — bl — bl +bZ,) (4d)
Hy = PPy Pz (b, + bL, + by, + b, — bl —bZ, — b, —b7)

+ Px Py 52 (+biz - bfz - bjrz + b:z) + ﬁx Py pZ(_bix + birx + bjrx - b:X) (4e)
H, = Px ﬁy ﬁz(bix + bJ—rx + b—ty + bJ—ry - b:-x - b:x - b;y - b:y)

+ Pxpy P, (—bfy, +bFy — b, —b7) + PPy P, (—b}, + b, + bl —b7y). (4f)
The resulting expanded style mesh is as shown in Figs. 3 and 4.

In (2), there is no need to denote the field component to which the particle contribu
since this is determined by the parity operator (3) and spatial coordinates of the site
valid propagation directiod for a particle at arEg or H; site is any non-zero outcome
of the operatiord x &. Again, this is because the particles represent TEM propagators.

illustrate our definitions of particles, four particles within a unit cell of the automaton a
provided in Fig. 4.

y i T =4
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FIG.3. Visualization of two cuts of the lattice in the— zplane. These cuts arexat X, Al andx = (Xo+1) Al.
Both here and in Fig. 4, the solid lines indicate paths along which particles may propagate, and dashed lines inc
paths along which particles may not propagate.
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FIG. 4. A single expanded three-dimensional cell indicating the spatial organization & trel H field
sites and their relation to the particles. This expanded mesh implementation occupies a spa&M{@sites.
PositiveE, andH, particles are shown propagating from tgto H,, andH, to E, sites, respectively. Positive
E, and H, particles are shown propagating from theto H,, and H, to E, sites, respectively. The front face
(x =0) and the back facex(= 1) can be seen as a portion of the planes of Fig. 3.

Two cuts through the lattice in the— z plane are shown in Fig. 3, and a complete uni
cell is provided in Fig. 4. The unit cell shown in Fig. 4 occupies a cube with a side lenc
of 2 Al. The distance from aB; site to the next occurrence of & site is 2Al. In Figs. 3
and 4, the sites are labeled by the field component represented by a particular sitE:At a
site, all the particles contribute to tljecomponent of the electric field. A site is required
for each Cartesian component of the electric and magnetic fiEld<Ey, E;, Hx, Hy, Hy).
For this particular automaton, only microscopic transverse electromagnetic (TEM) pr
agators exist. Thereforé;polarized particles do not travel in ti§edirection. In both of
these figures, the solid lines indicate the presence of interconnections or paths along w
the particles travel. The dashed lines are placed for visualization to represent paths &
which particles are not allowed to travel. The intersections of dashed lines represent I
tions where particles are not allowed to exist. Because of this restriction, a specific sp:
organization of sites is required in order to connect the three electric and the three mag
field sites. This spatial organization is the expanded unsymmetrical spatial organizatio
Fig. 1a. The site labels are given in terms of the parity operator (3) in Table I. Also provic
in Table | are the correspondence between net particle density (positive particles—neg
particles), net momentum, and field quantities. This additional information aids in the |
derstanding of the field definitions (4). The two null sites are spatial locations at whi
particles do not exist. An explanation of how the lattice of Fig. 3 and unit cell of Fig.
relate to the Cartesian representation of Maxwell's equations (1b) is given at the en
Subsection 111.2.

[11.2. Operation of the Automaton

Based on the above description of the geometry of the LGA, the operation of the L(
can be now described in the usual manner in terms of collision and advection events |
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TABLE |
Specification of Site Locations in Terms of Parity Operators and Relevant
Electromagnetic Field Quantities

Site label Px Py o Particle density x-momentum y-momentum z-momentum

E, pk=1 p=1 p,=0 E. NA —H, Hy

E, p=0 p,=0 p,=0 E, H, NA —H,

E, px=0 Py = 1 p.=1 E, 7Hy Hy NA

Hy k=0 p,=0 p,=1 Hy NA E, —E,

Hy =1 p=1 p=1 H, -E NA Ex

H, pr=1 Py = 0 P = 0 H, Ey —Ex NA
Null k=1 p,=0 p,=1 NA NA NA NA
Null p=0 p=1 p,=0 NA NA NA NA
The dynamics of the LGA are defined as

b, (X £ e Al t 4+ At) = b, (X, t) + C (B(X, 1)), (5)

whereCjEE is the collision operator for the particles travelling in thé direction, and

& € (X, Y, 2). Equation (5) can be interpreted as defining the states of the lattice at ti
t + At in terms of the states at tinteHere, the particles propagate with speed per At.
This collision operator includes the effects of both the collision and the polarization event
order to separate the polarization and collision events intermediate variables are emplc
The intermediate variables are denotedﬁg,‘which are the bit values after the collision
operation, but before the polarization event. Therefore, the lattice dynamics can alsc
defined as

by, (X £ ¢, Al t + At) = b, (. t) + T, (B(X, 1)) (6a)
b, (. t) = T, (B(X, 1)), (6b)

where the operato€ describes the collision event without the polarization event, and tt
operatofT describes the polarization event. HPP collision rules are applied [16], and us
the above notation, the collision event is given as

b (X £ AlLy, z, t + At) = b, (X, t) + T (B(x, 1)), (7a)
b, (X, y £ Al z,t + At) = by, (X, t) + CTL (B(X, 1)), (7b)
b, (x, y, 2+ Al t + At) = b, (x, t) + CL(B(x, 1)), (7¢)
where
\Ci:x(B(X’ t)) = (pX py Pz + ﬁx 5y 52)6)%2 + (pX ﬁy 52 + ax py pZ)GTy’
‘CIy(B(Xﬁ t)) = (pX 5y 52 + 5x py pZ)®§x + (pX py 52 + Ex Ey pZ)®§/tz’
CL,(BX, 1)) = (PxPy Pz + Py Py D) Oz + (Px Py D, + P Py P2) O3y,
and

Wt RE P =
Or. = (b}, b, bi.b*, — by, b* by .b7,).,  wheren £ € (x,y,2).
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The particle states in the definition f@)j; given above are evaluated(@t t). The above
collision operator is homogeneous, thus is applicable at every spatial location throughou
lattice. The parity operatorg;, are used to specify the appropriate spatial locations at whic
the appropriate particle interactions occur. These terms specify the spatial heterogenel
the lattice as shown in Figs. 3 and 4 within a homogeneous particle description (2).

It must be noted that in the description of the collision operator €&),particles do
not interact with—¢ particles andrice versaThe HPP collision operator defined in (7) as
@nis is succinctly described as particles which do not interact, except for pairwise head
collisions; for pairwise head-on collisions, the resultant particles are transforrhéal th@
original pair [6].

Operation (6a) is applied at all sites within the lattice to obtain the vahu#soughout
the entire mesh. These values are then transferred to adjacent sites, via the polariz
operation (6b), to obtain the new states of the autométton,

Again, due to the spatial organization shown in Figs. 3 and 4, the polarization ev
is spatially heterogeneous and requires the parity operators in order to be described
homogeneous manner. The polarization event is given as

b (X, 1) = Py Pz Y, (X, ) + Py P DT, (X, t)
b= (X, 1) = pyp b, (X, 1) + Py p, BT, (X, 1)
by (%, ) = Py Pz by (X, 1) + px P, b, (X, 1)
by (%, 1) = PP, b, (X, 1) + PP BT (X, 1)
b, (X, t) = px Py b, (X, t) + Py Py BT, (X, t)
b=, (x, 1) = Py Py b, (X, 1) + PxPy BT, (X, 1).

(8a)

Operation (8a) is invariant with respect to shifts in space or time, and can be rewritten

bE (x + Al,y, z,t + At)

= Py, 0L, (X + Al Y, Z,t + At) + pyp, b, (X + Al,y, z t + A)
b, (x — Al,y, z, t + At)

= pyP b5 (X — Al y, Z t + At) + p,p,bF, (x — Al,y, Z,t + Ab)
b, (X, y+ Al z t + At)

= PP D, (X, Y + Al Z. t + At) + pep, b, (X, Yy + Al z. t + At) )
b, (x,y — Al z t + At)

= PP, bEy (X, Yy — Al Z, t + At) 4 P p BT (X, y — Al Z, t + Al)
bE, (X, Y, z+ Al t + At)

= PPy b, (X, Y, Z+ ALt + At) + pp, BT, (X, Y, Z+ Al t + At)
bE, (X, y,z— Al t + At)

= Py ﬁybfz(x, y,z— Al t + At) + pepy b, (X, y, z— Al t + At).
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We can now substitute (7) into the above polarization event (8b), to obtain

b (X + Al Y,z t + At) = pyp,(bF, (X, 1) + CE,) + pypz(bI, (X, t) + CTT,)

b* (X — AlLy, z t + At) = pyp(bZ, (X, 1) + CZ,) + p, p,(bF, (x,t) + CTTF))

by, (X, Yy + Al z t + At) = pyp, (b7, (. 1) + CF,) + pep, (bT,(x. t) + CT,) o
bE, (X, y — Al, z, t + At) = pyp, (0%, (x, 1) + CT*)) + p, p(bF,(x, ) + CF)’
by, (X, ¥, Z+ Al t + At) = pxpy(bi, (X, t) + CTF,) + pePy (b, (x, 1) + CL)
b*, (X, y, Zz— Al t + At) = p,py(b%, (X, 1) + CTZ,) + pupy (bF,(x, 1) + CTTF,).

In order to obtain the dynamics of the form (5), we have to rearrange the terms in (
Rearranging the collision event fb_iﬁX yields
bE, (x+ Al y, z, t + At)
= pyp,(b (X 1) 4+ TL) + pypz (b, (x, 1) + CTF)
= Py Pk (X, ) + Py P, Ciy + Py Pz (b (X, ) + CTT,)
= (1= py Py (%, 1) + (1— pypz) Cix+ pyp:(bT(x, ) + CT).  (20)

Adding and subtractingy p,b*, (x, t) from the RHS of (10) yields the appropriate form of
the collision operator,

b (x + Al,y, z,t + At) = bf (x, t) + CT,, (11a)
where
CJﬂr:x = 5y 5Z\Ci:x + (1 - 5y 52) (bIX(X, t) - bix(xv t) + ‘Cix)' (123.)
Similarly for the other particles,
b%, (x — Al,y, z,t + At) = b%,(x, t) + C%,
by, (X, ¥y + Al z t + At) = by, (X, t) + CF,
b*, (X, y — Al, z,t + At) = b* (X, t) + C*, (11b)
(X, Y, 2+ Al t + At) = bE,(x,t) + CT,
b*,(X,y.Z— Al t + At) = b*,(x,t) + C%,,
where
C%, = pyP.C%, + (1 — pypo) (bF, (x, 1) — b, (x. 1) + CT,)
erty = 5)( pZ‘Ci:y + (1 - 5)( pZ) (bizy(xv t) - bi:y(xa t) + ‘Cjiy)
C*, = PP, C%y + (1 — pxPy) (b¥,(x, t) — b* (x,t) + CF,) (12b)
sz = pX py\sz + (1 - pX py) (bIz(X3 t) - biz(x t) + ‘C )
C*, = pxPy TS, + (1 — pypy) (bT,(x, t) — b, (x, 1) + CT,).
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FIG. 5. The junction between two cells displayigge, and+H, particles.

A particular example of the polarization event (8a) required to link all of the lattice siti
that represent different electric and magnetic field components is provided in Fig. 5. T
adjacent sites in the — y plane are shown in Fig. 5 (ary and anE; cell). At the junction
between these sites, an operation is required to ensure consistent polarization as pal
pass to an adjacent site. For instance, a posHivparticle travelling in thet+x direction
is transformed into a negativéy, particle when it enters thel, site as shown in Fig. 5a.
Similarly, a negativee;, particle travelling in ther-x direction is transformed into a positive
Hy particle when it enters thidy site as shown in Fig. 5b. A positive (negative) particle
travelling in the—x direction remains a positive (negative) particle upon enteringgthe
site. The special case of a single particle propagating through the lattice-ixttigection
is provided in Fig. 6. There are no other particles at the lattice sites and therefore follow
the HPP collision operation (embedded within (7)) the particle propagates through the r
undisturbed. The particle exists as a positive particle aEttsite at timd. Itis transformed
into a negative particle existing at ti&, site at timet + At, and subsequently becomes a
positive particle at th&; site at timet + 2At. Note that this special case is used to illustrate
the transfer event and does not represent a configuration of the mesh that would leac
particle solution of an EM field problem.

Each of the six sites which comprise the unit cell (labelleEgasEy, E,, Hy, Hy, Hzin
Fig. 4), can be considered to model one of the six expressions in the Cartesian represen
of Maxwell’'s equations (1b). For instance, the expressigg/ ot = (1/¢)(dH,/dy — dHy/
dz) can be considered to be represented byghéeld site. ThekEy field component in the
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FIG. 6. Visualization of a single particle propagating through the mesh on successive time steps.

expression is linked to thidy andH; fields. In the unit cell of Fig. 4, the sites representing
Hy, andH, are adjacent to thEy site. The transformation events linking adjacent sites ca
be thought of as providing coupling between the six expressions representing the expre:s
of Maxwell's equations in Cartesian coordinates. The dynamics of the automaton cons
each of the scalar components of the electric and magnetic fields. The conservation of t
guantities is observed through inspection of the collision operator and the polarization e\
with respect to the definitions for the field quantities (4) indicates that.

I11.3. CAM-8 Cellular Automata Machine Implementation

All of our computational investigations of cellular automata utilize the CAM-8 cellula
automata machine [1]. CAM-8 can be considered as a personal cellular automata st
computer and consists of about 2 MBytes of SRAM and 64 MBytes of DRAM. A SUI
workstation acts as its host. The machine is capable of performing 200M site updates
second on a space of 32M sites.

The updating of sites is performed by table look-up. The binary variables which belc
to a particular 16-bit site are passed from DRAM memory through a look-up table stol
in SRAM, and then placed back into the same DRAM memory location. Movement
data corresponding to the bit-fields within the site is accomplished through DRAM addr
manipulation. For the case of CAM-8 evaluation of a LGA, the collision operator is compile
into alook-up table and the advection events performed via DRAM address manipulation

To implement the LGA described in Subsections IIl.1 and I1l.2, each field location in tl
mesh is assigned to an individual CAM-8 site. The allocation of bits used to encode the L
is shown in Table II. Note that for this initial implementation we exceed the first subcell |
1 bit, and therefore require the use of a single additional subcell. This leaves plenty of
available in the second subcell for implementing rest particles, material markers, sot
markers, random bits, etc.

The implementation described in Table Il is selected to minimize computational co
plexity, although itis inefficientin terms of memory storage. For instance, B aite, there
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TABLE Il
Bit Allocations for CAM-8 Implementation

Bits Usage
Subcell 0

0-3 x-directed moving particles

4-7 y-directed moving particles

8-11 z-directed moving particles

12-14 Three-bit cell marker (6 types of cels,, E,, ..., H,)

15 PEC boundary marker

0-7 Also reused as counting bits
Subcell 1

0-14 Not used

15 Marker for counting window

exists 8 moving particles (see Fig. Iﬁy(x, t), b, (x, t). However, 12 bits are allocated
in Table 1l to describe this site resulting in 4 unoccupied bits per site. As well, allocati
each field location to a CAM-8 site, and hence using a marker to denote the site typ
also wasteful. The LGA cell of Fig. 4 requs@ 2 by 2 by 2 rgion of CAM-8 sites. Two of
every eight CAM-8 cells contain a null-cell at which there never exists information.

Although memory inefficient, the implementation described above is relatively easy
develop in a programming sense. Data movement is easily accomplished. The algorith
easily parsed into different look-up tables for boundary condition implementation, parti
collisions, intercell polarization operations, and event-counting. Separation of these eve
with a single data transfer event between the collision and event counting table sc
allows for easy testing. In the final implementation, in order to improve computatior
speed only two look-up tables and therefore two scans of the computational space
required. One is to perform the boundary condition implementation, particle collisions, ¢
intercell polarization operations, and the other is for the event counting.

Both perfect electric conducting (PEC) and perfect magnetic conducting (PMC) bound
conditions have been implemented. These are enforced through locally setting the tange
electric (for PEC) and tangential magnetic (for PMC) fields equal to zero. An elect
(magnetic) field component at df: (H;) site is set to zero by reversing the polarization
of the positive and negative particles.

One possible assignment of the three-bit cell marker is

Marker bits  Field component

000 Ex
001 Hx
010 E,
011 Hy
100 E,
101 H,
110 Null

111 Null
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TABLE 11l
Percent Error in Resonant Frequency Predicted by the LGA Simulation
of TE and TM Modes [17]

Simulation Modes Size of space % error TE, TM solution
1 TEi11, TM11q (128 0.12,0.12
2 TEi21, TMa2z, (128y 0.08,0.12
3 TE11, TMyy, (128, 128, 256) 0.82,0.12
4 TE112, TM3p (128, 128, 256) 0.15, 0.27
5 TE;z13, TMopy (256, 256, 128) 0.75, 0.09

IV. NUMERICAL VALIDATION

In this section, the LGA is validated through calculations of the resonant frequenc
of various cavities. The first problem considered is the simultaneous solution of both
and TM modes within a rectangular PEC cavity. TE or TM modes within a rectangul
PEC cavity can be individually described by their scalar potential functi.;a,iﬁ%J and
(pmp (13) [17], with appropriate boundary conditions imposed on them. These bour
ary conditions can be enforced through setting the tangential component of the e
tric field to zero on the cavity walls. This condition is imposed differently on the tw
scalar potential functions, since the components of the electric fields are derived dif
ently (see (13a) and (13b)). Therefore, a simulation involving both TE and TM mod
with boundary conditions enforced on the field components cannot yield correct resi
without the capability of solving Maxwell’s equations. In Table Ill, results obtained fror
various simulations are provided. To compute the resonant frequencies, a discrete Fo
transformation of the transient response was computed and peaks in the frequency ¢
trum were identified with the various modes. In each simulation, TE and TM modes
excited within cavities of various sizes, and the resonant frequencies are compare
the exact solutions. The results indicate that the resonant frequencies of the TE and
modes are accurately predicted by our LGA for a variety of different mode numbers &
simulation space sizes. The errors provided in Table Il are less than one percent.
results were obtained from single LGA simulations. Ensemble averaging of LGA sil
ulations might improve the predicted resonant frequencies. Ensemble averaging is n
efficient than space-time averaging in the postprocessing of LGA results. Examinatior
the field distributions produced by the LGA would be efficiently examined using ensem|
averaging.

The present capacity of our machine is 64 MBytes and therefore permits a maxim
space size of (256 CAM-8 sités)> 256 256 256 (2siteg * 2 Bytes/site~64 MBytes.
This refers specifically to CAM-8 sites. The number of LGA unit cells (as displayed |
Fig. 4) is therefore 128 The simulations were run for 4,000 time steps.

The initial conditions for each analysis were enforced through the specificatibip of
and E; field distributions throughout the simulation space. The distribution function fc
TM mnp and TE mnp modes with subsequent definitions for the electric and magnetic fie
components are [17]
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. mm X . n Z
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§oxoz ¥ oy oz g\ oaz2
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respectively, wher§ = jou, 2 = jwe, andk = /(m/a)2 + (n/b)2 + (p/c)2.

We have also analyzed a finned waveguide using the LGA. Although this is actuall
two-dimensional problem, we have utilized the three-dimensional automaton to anal
it. The fin-line cross-section is aligned in the- y plane, and a short simulation space
in the z direction is used (with a wrap-around boundary condition used to terminate |
Z=minimum andz = maximum planes). A complete description of these numerical sim
lations is provided in [9]. The problem has been previously investigated with the symme
condensed node (SCN) TLM algorithm by Herring and Hoefer [18]. The geometry is spe
fied bya = 2b, and the resonant frequency is computed for various gap dizebenchmark
solution was obtained through the use of the SCN-TLM algorithm with a lattice size of 2
by 128 Al [19]. The results are summarized in Fig. 7, and indicate possible values for
LGA to TLM mesh ratios. This problem is an interesting one to carry out a meaning
comparison on because it is simple enough to allow rigorous computational investigat
yet clearly distinguishes between dispersive errors and errors due to imperfect modelir
a spatial field distribution. The discretizations (for the TLM and FDTD analysis) are su
that numerical dispersion should be minimal. As discussed, the LGA results are free
numerical dispersion; however, they possess numerical dissipation, similar to that du
Lax—Wendroff style finite-difference or finite-element algorithms [20]. The errors in tf
determination of cut-off frequency demonstrated in Fig. 7 are due to the inability of t
algorithms to accurately predict the behavior of the EM field distribution around the fin. ,
expected, as the gap size increases (size of the fin decreases), the errors for all discretiz
are minimized. We can see in Fig. 7 that the solutions for a TLM mesh of 32 by 16 ce
provides the same accuracy as a LGA mesh of 2048 by 1024 CAM-8 sites. The 204¢
1024 CAM-8 sites correspond with 1024 by 512 LGA cells, and therefore the ratio of LC
to TLM cells required for equivalent accuracy is approximately 30 : 1 per linear dimensi
of the problem.

The final problem examined is a short cylindrical perfect electric conducting (PE
cavity. This particular problem adds the twist of requiring a stair-stepped discretization
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FIG. 7. Percent error in determination of the resonant frequency of the dominant mode versus gap size
various TLM and LGA simulations utilizing different mesh spacing.

the cylindrical surface. This problem is convenient since an analytic solution exists. T
cylinder was embedded within a CAM-8 space of size 128 by 128 by 8 sites. The LC(
results are compared to stair-stepped FDTD results provided in [21]. The spatial cell
within the automaton is 0.01 m, as compared to 0.05 m within the FDTD results provided
[21]. This 5:1 LGA to FDTD mesh ratio is much smaller than that indicated by the finne
waveguide analysis. It should be noted that a stair-stepped FDTD analysis does not reprt
the current state-of-the-art. In fact, the results provided in [21] were actually presentec
order to demonstrate the accuracy of their conformal-style algorithm which reduces st
stepping errors. Their “corrected” resonant frequencies differ from the analytic results
less than 0.1%. We compare the LGA to the stair-stepped FDTD results here to indi
one advantage of the fine discretization required by the LGA (see Table 1V). The spe
treatment of curved PEC boundaries and perhaps even curved material boundaries (v

TABLE IV
Comparison of % Error in LGA Results and Stair-Stepped
FDTD Results from [21]

Diameter (m) % error LGA % error stair-stepped FDTD
1.00 0.29 2.53
1.03 0.36 2.38
1.05 0.46 4.36
1.07 0.76 3.18

1.10 0.46 1.95
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have not received a lot of attention) is not necessary within LGA. Fitting a numeric
mesh to a geometrically complex object is not a simple task. Due to the extremely 1
spatial discretization associated with LGA, accurate spatial description of PEC bounda
is achieved by default.

Moreover, all of the results indicate that the numerical dispersion of the LGA is ve
small, for the discretization we have selected. However, numerical dissipation is presel
all of these simulations, in the form of a bulk viscosity. This is a result of using fluid-lik
collision rules (HPP collisions). As expected, the viscosity we have observed is anisotrc
[6], and, examining the decay of various modes in various sized simulation spaces indic
itis in the range of 0.07 to 0.5812/At.

The results of this section indicate the success of the LGA to compute solutions to |
field problems. The present validation does not, however, prove that the LGA is a consis
or convergent method for solving Maxwell’s equations. In this paper we have not prov
analytically that the model reproduces Maxwell’s equations in the macroscopic limit. Tl
proof is eventually necessary and is a topic of our current research [22].

In this paper, we have only addressed EM field problems with homogeneous mate
properties. Most general problems will possess heterogeneous material regions. We
modeled EM wave interaction with complex heterogeneous objects including a human b
cross section in two dimensions using LGA [7, 8]. The LGA described in [7, 8] is bas
on the addition of rest particles to the HPP automaton. These modified HPP LGA car
implemented in the same way as the standard HPP automata have been implemented
paper, in order to obtain an LGA for modeling heterogeneous three-dimensional EM fi
problems.

The increased mesh density required by the LGA is largely due to the presence of
merical viscosity. The viscosity has a large impact on problems with rapid spatial variat
of the field distributions. These variations occur in the vicinity of sharp edges such as 1
encountered with the finned waveguide which results in a LGA to TLM cell ratio of 30 :
Although we are utilizing only single-bit variables such an increase in mesh density v
result in impractical memory requirements. The reduction of this viscosity is extrem
important for the practical application of LGA for EM field modeling. We have investigate
integer LGA (ILGA) utilizing low-precision integer variables (4 bits per variable). The
oretical and numerical investigation of these ILGA have indicated a significant decre
in the LGA mesh density required for the finned waveguide problem (from 30:1 to 3
[23, 24]). This results in a decrease in the number of cells by a factor of one thouse
This development allows for the practical application of LGA to the modeling of spatial
heterogeneous three-dimensional EM field problems.

V. CONCLUSIONS

In this paper, we describe a LGA for modeling three-dimensional EM field problen
The automaton utilizes particles which possess mass, momentum, and polarization. (
servation of mass and momentum is maintained through utilization of HPP collision eve
at individual sites, and polarization transformations are applied to maintain correct po
ization information for particles travelling to adjacent sites. The new automaton utilizes
expanded spatial cell representation which allows for reasonably simple implementa
on a CAM-8 machine. This three-dimensional interconnection of two-dimensional cells
reminiscent of that utilized by the Yee FDTD algorithm [14], the expanded TLM algorithi
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[

0], and the spatial network method [25]. The numerical results indicate the success of

automaton in analyzing three-dimensional EM field problems.
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